Small Spacecraft Technology

Precision Global Navigation Satellite System Relative Navigation & Timekeeping for Miniaturized Distributed Space Systems

Completed Technology Project (2016 - 2018)

Project Introduction

The goal of this project is to provide unprecedented precision real-time absolute and relative navigation capabilities to formations of nanosatellites using signals offered by modern Global Navigation Satellite Systems. The 0.5U system and associated software is capable of integration with most satellites to provide peer-to-peer decentralized navigation accuracy at the centimeter-level over separations up to hundreds of kilometers. The ability for each small spacecraft to know the relative positions of the other spacecraft in the formation with high precisions is desirable in several mission types including remote sensing, communication, and proximity operations.

Anticipated Benefits

This technology can be used to enhance proximity operations within Earth orbit and could help constellations of nanosatellites to precisely correlate distributed scientific observations and to coordinate spacecraft flying in formation to produce a distributed aperture.

Primary U.S. Work Locations and Key Partners

Precision Global Navigation Satellite System Relative Navigation & Timekeeping for Miniaturized Distributed Space Systems

Table of Contents

Project Introduction	1
Anticipated Benefits	1
Primary U.S. Work Locations	
and Key Partners	1
Project Website:	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Target Destination	3

Small Spacecraft Technology

Precision Global Navigation Satellite System Relative Navigation & Timekeeping for Miniaturized Distributed Space Systems

Completed Technology Project (2016 - 2018)

Organizations Performing Work	Role	Туре	Location
Stanford	Lead	Academia	Stanford,
University(Stanford)	Organization		California
Goddard Space Flight Center(GSFC)	Supporting	NASA	Greenbelt,
	Organization	Center	Maryland
Tyvak Nano-Satellite	Supporting	Industry	Irvine,
Systems Inc.	Organization		California

Primary U.S. Work Locations	
California	Maryland

Project Website:

https://www.nasa.gov/directorates/spacetech/small_spacecraft/index.html#.V0

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Stanford University (Stanford)

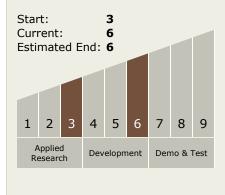
Responsible Program:

Small Spacecraft Technology

Project Management

Program Director:

Christopher E Baker


Program Manager:

Roger Hunter

Principal Investigator:

Simone D'amico

Technology Maturity (TRL)

Small Spacecraft Technology

Precision Global Navigation Satellite System Relative Navigation & Timekeeping for Miniaturized Distributed Space Systems

Completed Technology Project (2016 - 2018)

Target Destination Earth	

